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THEORY OF PLASTICITY AND CREEP TAKING ACCOUNT OF MICROSTRAINS* 

YU.1. KADASHEVICB, V.V. NOVOZHILOV, and YU.A. CBEBNYAKOV 

A relationship between the theories of plasticity and creep of the type 
/l, 2/ and theories based on the concept of slip is set up, A most 
logical structure is proposed for the constitutive equations of the theory 
which is convenient for engineering calculations. 

It has been shown /3/ that the theory of slip /4/ results from the 
theories /l, 2/. However, it remains unclear whether a deeper connection 
exists between these theories. Moreover, the connection between creep 
theories constructed using the approach in /l, 2/ and creep theories 
based on the slip concept was not generally examined. A survey of the 
development of polycrystalline strain theory 151 yields a complete 
representation of the state of matters in plasticity and creep theories. 

1. We consider the plasticity theory /l, 2/ proposed for investigating the plastic 
deformation of polycrystalline metals and based on the assumption that the statistics of 
anisotropic crystals can be replaced by the statistics of isotropic particles possessing 
different flow limits and a random field of initial microstresses and strains. 

The theory of plasticity is constructed on the basis of the following assumption. 
lo. A local plastic flow law is formulated that connects the stresses and strains; this 

law contains one or more random parameters. 
20. The joint distribution function of the random parameters is considered given and 

determined taking experimental data into account. 
3O. The genexalized Krher relationships connecting the stress and stress deviations are 

assumed to be valid. Such relationships enable the local plastic strain laws to be connected 
with the macroscopic plastic strain laws. 

Under active plastic strain the constitutive equations of the theory can be represented 
as follows /l, 2/ 

Here EijO' is a random tensor of the initial microstrains, 7 is the local yield point, 

bj is a directional unit deviator fixing the direction in deviator space, 62 is a set of 
directions of the active microplastic strains, dQ' is the differential form ("solid angle" 
in five-dimensional deviator space), @ (r) is the integral distribution function of the local 
yield points, and ( ) is the averaging symbol. 

Without considering the different versions of the theory (to which the surveys /6, 7/ are 
devoted) here, we note that they afforded the possibility of describing and even predicting 
fairly fine effects observed in tests. 

2. Let us use the hypothesis /3/ p = hij, e+P = E&j. In fact, it means the following. 
The local flow surface6 are planar, they move translationally under active loading; the 
plastic strains are directed along the normal to the plane flow surfaces. Then we have in 
conformity with (1.11 

<O,~>=Tij+msij'~T,iij)i~s R( t, r',h,j,li,j) 2: Ei~P(T',?~,~)~~~~ fz') 
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Tij = Thi i, Eij ’ = C&i j c-9) 

(Eij’) = i i8ijp (T’, Ai;) dQ’ d’B (7’) (2.3) 

Eq. (2.1) holds only for those directions hijE B in which active microplastic strain 

8,' > 0 occurs. The flow condition can be obtained from (2.1) if it is multiplied by hij 
and summation is performed taking conditions (2.2) into account. It has the 

(“U)hij~~+m~p(~,hij)1-3~R1(~,~‘,i.ij~hil.) X 

Ep (T’, hi;) (EQ’ChD (t’) 

(Rl=Rhijhi~) 

We note that the equality sign in (2.4) is achieved for the directions 
microplastic strain h,jE P. It is convenient to introduce the new notation 

T (r, h,j)=r + msp (7, hij) + 1s ~l(r, z', J+ij, hii) x 
on 

E,@',h,j')dQ'dCD(T') 

We call the quantity T(r,hlj) the intensity of the effective stresses, 
to call the function RI the influence function. 

form 

(2.4) 

of the active 

(2.5) 

henceitisnatural 

As is seen from (2.5), the intensity of the permissive stresses depends not only on the 
magnitude of the local plastic strains (the second component in (2.5)), but also on the 
microplastic strains of the remaining particles by means of the influence function. In the 
new notation, (2.4) takes the form 

<ai j> Ai j d T (z* A, j) 
The differential flow condition can also be written 

(Oil'> %j=T'(Q%,) 

in the active microplastic strain domain. 
The last two conditions enable both the magnitude of the domain Q that is under active 

loading, andthe intensity of the microplastic strain rate eF' to be determined. 
We note that the intensity of the effective stresses can also be given in the following 

differential form 

For a known magnitude of the microplastic strain rate intensity Ed’ and a domain of 
active microplastic strain directions B the macroscopic strain is determined from the formula 

(ET;) = 1 \ Ep’ (t’, hi j’) dn’ &p (T’) 

ob 

The case <T) = T = t0 also merits a separate examination. Then all the relationships 
presented are simplified and have the form 

<~<j> &j< I* <cij') &j=T'('ij) (2.6) 

Here 

T&j)= To + me,(%j) + $, RI&~, &')e,&')dQ (2.5) 

or 

T’(hij) = mlEp' (h+j) + S RS (ii,, hii) Ep’ (hi;) d0’ 
P 

(2.8) 

(eijP) = S ep (hi;) hi,‘dQ’, (eip’) = S ep’ (hi;) hi,’ dR’ 
R n 

3. We will now show that under certain additional constraints, a number of known 
plasticity theories based on the slip concept is obtained from the theories in /l, 2/. We 
assume that the deviator has the particular representation 
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hij = (nilj + ?Z$i)/2 (3.1) 
where ni and li, respectively, determine the normal to the area extracted in the material 
body and the direction to it. Then 

(Uij) hj = <anf>, &i;~ij=Ep = Vnl 

Here <U,,) is the mean tangential stress to an area with normal ni in the direction li. 
Taking account of the above, we write relationships (2.7) and (2.0) in the form 

(nnf) = TO f my,, L S RI (n,. n,‘, I,, li’) Ynf (ni’, 4’) do’ (3.2) 
R 

(Unr’) =m~y,,’ mL S Rz (n,, ni’, I,, 1,‘) Yd’ (ni’, L’) dcY (3.3) 
R 

We will examine certain special cases 

1'. nl = 0, RI = 6 (1 - hijhij') ((u"!) - T,)IF ((a,!)) 

(F is the universal function of the material). 

Then a'classical version of the theory of slip /4/ is obtained from (3.2). Its dis- 

advantages are obvious; there is no influence of shear in one direction on the change in 

shear in the other directions, and consequently, it is impossible to describe the Bauschinger 

effect and cyclic loading. 

K1 =f (Ui) [raliZi’S (1 - nini’) + r&j&j’] 

In this case it follows from (3.2) that 

where 01, o2 are the boundaries of the slip fan in a plane with normal nit and 0, r2, r3 are 

material constants. This version of the theory is proposed and developed in papers from the 

Leonov school /0, 9/. The theory mentioned already takes account of the relationship between 

the shears. However, the description of the cyclic loadings is fraught with serious 

difficulties and, as is noted in /9/, requires the introduction of a number od additional 

assumptions. 

30. We assume that RI (nt, ni’, lj, li’) = Ra (nr, nl’), m * 0. The maximum value of <U,l> for a 
fixed direction n, is Ui,niSiIS, where si is the tangential stress vector acting on the area 

with normal ni and s is the intensity of mean tangential stresses (S=G). Taking account 

of the above, we write (3.2) in the form 

(s (ni)) = s + S RS (ni. G’) ~nl (ni’) dQ (3.4) 
0 

(Q is the domain of active shear directions for different directions ni). It is interesting 

that in such an approach the local shear orientation on the slip area coincides with the 

direction of the tangential stress acting on this area. 

We now consider a special case of the representation (3.4). We set 

R3 = 6 (1 - %Q’) (<s (nJ> - S) iyp (<s)) 

then from (3.4) we arrive at Malmeister's theory /lo, ll/. 

If the relationships (3.3) are initial, then as in the preceding, we obtain 

CS’ (ni)> = S Ra (ni, ni’) ~,,t’ (ni’) dQ’ 
$1 

(3.5) 

We assume that this last equation is solvable in the form 

Ynl'== S L (ai, ai') (S’(k)) d!?’ (3.6) 
L1 

Then a version of slip theory described in /12/ is obtained. The computational examples 

presented in /lo-12/ showed that the theory can yield satisfactory agreement with test data. 
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Tests on cyclic varaible-sign loading are least favourable for the theory. 
A function R,(ni,ni’) can be constructed for the plane strain case so that the slip 

system would be planar /13/. In this case we arrive at the Leonov-Shvaiko theory /14/, which 

was later considerably developed in /13/. 
Therefore, within the framework of the general approach proposed, the possibilities of 

different slip theory versions can be estimated and compared. 

4. Making the theories (2.6)-(2.0) specific depends on specifying the influence function 

R (Xij, hij’). It is natural to assume that the structure of this function has the simplest 

form 

R (hij, Xij’) = R (zi,jhij) = ~16 (1 - hijhij’) + a&ijhii + a3 + 

a46 (1 + hijkij’) 
(4.1) 

where ai are universal functions of the material dependent on the macromeasure of the plastic 

strain, and S(1 - hijhij') is the delta function. 
We note that the case a3 = a4 = 0 is studied in /3/. 

In the general case the constitutive equation of the theory takes the form (taking (4.1) 

into account) 

We introduce the deviator of the rate of change of the active stresses <rij’) = <Oij’) - 
AZ<Eij’). Then we obtain the following equation to find the rate of change in the microplastic 

strain intensity 

Ala,' (h,j) + As S up’ (7 ii) dQ’ = hij <rij’; 
D 

(Q is the domain of active microplastic strain). The solution of this equation has the form 

Hence 

Relationships (4.2) completely solve the problem of constructing the constitutive equations 

of the theory of microstrains for a known domain 8 of active microplastic strain directions. 

To determine the domain 8 itself it is necessary to use inequality (2.6). To investigate 

this inequality it is obviously necessary to construct an expression for the effective stress 

intensities T(h,,) and to analyse it in detail. The case of monotonic loading and the passage 

to a theory of flow with combined hardening is investigated most simply. Preliminary computa- 

tions showed that the version of the theory presented describes complex loading fairly simply, 
including even cyclic loading. The change in the flow surface , especially its rear section, 

corresponds well with test data. 

5. In recent years creep theories taking account of the microinhomogeneity of plastic 

strain development have been actively developed. Possible approaches to the construction of 

creep theories within the framework of the theories in /l, 2/ are presented in /6, 7/. Creep 

theories based on the slip concept have been studied in /9, 15-17/. Without examining the 
possible versions in creep theory construction, we present here a modified microstrain theory 
that follows from ideas in /l, 2, 7/ and we show the connection between such a version and 
creep theories using the concept of slip theory. 

Following /7/, we take as the fundamental local law several modernized local plastic 

flow laws by considering that the process is spread out in time: 

(5.1) 

eij” (t’, TO’, hij’) dt’ dQ’ d@ (T’) 
Tij = (Oij) - f3ij 



694 

We note that the law in the form (5.1) takes account of both the influence of the rate 
of plastic strain development onthe local yield point of the material and on the hereditary 
properties of the material. It is mentioned in a number of papers /18, 19/ that versions of 
the theory when the local yield point z and the influence function depend not only on the 
local but also on the macroscopic characteristics such as <A), <h'>,Q, merit special attention. 
These assumptions are not analysed in this paper. 

If we go over to the simplest version of the theory when pij = hij, sijP = sphij, we can 
obtain 

T (to, bj, t) = Toll) (e,, Q’) i- mep (TO, bjv f) i- 

~~~~(L-t’,~o,To’,iij,iij’)Ep.dl’dn’~~(i’) 

(Oij) hij A< T (TO, bjv t) 

For a known microplastic strain intensity function eP(t.rO,hij) the mean plastic strain 
is determined by means of (2.3). 

The special case r. =(zo> = To also merits attention. Then 

T Ctt hj) > (Uij) hij 

T (t, hj) = To@ (Ep, ep’) + meP (t, hij) + 
t 

$1 (ep, ep’) S 1 R (t - t’, i.ij, hij’) &<jP’dt’ dR’ 
PO 

Let us trace the connection between slip type theories and theories (5.1). We again take 
the deviator hij in the particular form (3.1), and then find from (5.1) 

<(J*I) = T,I (nil li, t, (5.2) 

Td = Toll, h k’) + mhl 7- $1 h k’) x 

S i R (t - t’, ni, ni’, li, I,‘) V,,l”dt’ dQ’ 
520 

<eij”) = S ynl%ij dQ’ 
n 

We will examine certain special cases 1”. 9 = 1, $1 =31(q) (q is the homological temperature) 

TO = f (I, <CL>), I = S G (t - t’) (U&j') dt’ 

m = qlrl, R = R1 (ii. 12,‘. Zi, 1,‘) 

We then have from (5.2) 

<%z> =f (1, <a)) + YnlWl -I- 

VI S RI (niv ni’, li, lip) ~nl (zig9 12“) dQ’ 
a 

Now, if we take 

RI = r,6 (1 - nini’) lili’ + r,hijAij’ 

in the last equation, we arrive at the creep theory proposed in /9/. 

2". 9 = 1, z', = fi(1, <ai)), +r = r, R = k ((I, t - t’) 6 (1 - njnj')-44' 

Then 

t 0, 

<(Jd = f (I, <%)I + r k (q. t - t’) cos (coo - o) do, dt’ (5.3) 

where 01, J-02 are the boundaries of the set of slip directions in the plane with normal ni. 

Eq.(5.3) determines the theory examined in /16/. 

3”. *=I, ~o=q(l-j(L)), m-0, /(i)=fQ(t-t’)Y(t’)dt’ 
0 

R = G (t - t’) RI (ni, ni’, li, li’) 

(Y is the rate of change of the temperature). We then obtain from (5.2) 
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(0n1> =Q (1 B-f (t)) + \ RI (~7 ni’, lit Ii’) PHI dQ’ 
h 

t 

P,,I = s G (t - 1’) ynl’ (t’) dt’ 
0 

We give the function G(x) in the form G(x) = ae-Bx. Then 

P,l'-t PP,, =aYnl' 

For such a representation of the function G we arrive at the creep theory proposed in 

/15/. 
4O. We consider a version of theory (5.2) for 

~=~l=(y,z'/~,,')mn(Y,,) 

Then we find from (5.2) 

which corresponds to the theor] proposed in /17/. 
The versions of slip theory presented above are capable, in their authors' opinion, of 

a fairly good description of complex loading processes. The possibilities of the different 

creep theory versions must still be compared; however, it can already be said that the 

approach proposed by the authors of this paper possesses extensive possibilities and permits 

not only a comparison of existing versions of the theory but also a description of the 
phenomena occurring during creep, by simpler means. 

described in /20/. 
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ON SYNTHESIS IN A DIFFERENTIAL GAME* 

N.N. EBASOVSKII 

The control problem is considered with minimization of the guaranteed 
result for a system described by an ordinary differential equation in 
the presence of uncontrolled noise. The concepts and formulation of the 
problem in /l/ are used. It is shown that, when forming the optimal 
control by the method of programmed stochastic synthesis /l-3/, the 
extremal shift at the accompanying point /l, 4/ can be reduced to extremal 
shift agianst the gradient of the appropriate function. This explains 
the connection between the programmed stochastic synthesis and the generalized 
Hamilton-Jacobi equation /5, 6/inthe theory of differential games. 

1. Formulation of the problem. Consider the system described by the differential 
equation 

I' = A (t) x + f (t, u, Y), u E P, L’ E Q, t, < t < 6 (1.1) 

Here, zz is the n-dimensional phase vector oftheobject, u is the r-dimensional control 
vector, v is the s-dimensional noise vector, A (t) is a continuous matrix function, f(t,u,v) 
is a continuous vector function, P and Q are compacta, and 

y = [,je,u(f. 2 [t]) p (&) + s x (t, u [tl, v [“]) dt 
(1.2) 

t. 

The functional which characteristizes the quality of the process in an interval !t,,@lC: 

[to, 61 is given. Here, s (& r) and x (t,u,o) are scalar continuous functions, a&r) satisfies 
a Lipschits condition and is convex with respect to x,and P(T)is the Bore1 measure in sets 
T c ho, @I. 

We consider motions r[t,[.]6]={z[t],t,,< t <6}, lying in a given bounded domain G of 
space {t, 5). Domain G is defined for t,<,<<ft, is closed, and satisfies the following 
condition /l, pp.37-42/. Given any initial position it*, z*) E G, every possible motion 
s[t,[-161 satisfies the inclusion {t,r[tl} EG for all t E It,, S]. The problem is to construct 
the optimal strategy d (.} = {u" (t, z, e), (t,r) E G, e> 01, which gives the minimum guaranteed 
result p" (t*, 5*). 

This strategy exists and by definition, satisfies the following condition /l, pp.67-81/. 
Given any number g> 0, a number s(c)'> 0 and a function &(c, E)> 0 exist such that the 
control law 

u = {u" (.)T a, A (ti}) (1.3) 
which forms the motion as a solution of the step-by-step differential equation 

X' ItI = A (t) 5 ItI $ f (t, U" (tiy x Iti], E), V [tI) (1.4) 
t, < t < ti,,, is* I * . -t k tl = t,, th.+1 = 6, x Et,! = 2* 

guarantees the inequality 7<p"(t,,x,)+ j, no matter what the measurable noise 

*pr~kl.~atem.~e~~.,SO,6,898-.902,19a6 


